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A previous extensive analysis of the mean-square intensity difference of Friedel

opposites [Shmueli et al. (2008). Acta Cryst. A64, 476–483] is here concisely re-

examined and confirmed by purely statistical methods. The analysis applies to

noncentrosymmetric crystals only. For special reflections and centered lattices

both mean-square intensity difference and average intensity of Friedel opposites

depend on the centering factor of the crystal lattice and/or on the isotropy

subgroup of the reflection. A complete classification of the reflections, based

on the above intensity statistics, is presented. It is also shown that the

experimentally important Bijvoet ratio is found to depend only on the chemical

composition of the unit-cell content and the wavelength of the radiation.

1. Introduction

A detailed analysis of the mean-square Friedel intensity difference

was carried out by Flack & Shmueli (2007) for the simplest triclinic

space group P1, while assuming the presence of a centrosymmetric

substructure. Albeit useful in particular cases, it was by no means

obvious that these results are applicable to, or have a bearing on,

symmetries other than P1. On the contrary, the mean-square Friedel

intensity difference depends on the low moments of intensity and

these are known to be space-group dependent (e.g., Wilson, 1978).

An analysis for all the noncentrosymmetric space groups was there-

fore carried out. That study (Shmueli et al., 2008), carried out by

straightforward algebraic and, in part, probabilistic methods, showed

that the mean-square Friedel intensity difference is indeed inde-

pendent of the space-group symmetry. General and special reflections

were considered, and so were primitive and centered lattices.

The present note arrives at these results in a simpler manner while

also including a complete point-group-dependent classification of the

reflections and relevant examples for its use. It is also shown that the

experimentally important Bijvoet ratio (e.g. Flack & Bernardinelli,

2008) is independent of the point- and space-group symmetries. We

think that this note fills a gap of knowledge on Friedel-difference

statistics in a concise and useful style, suitable for applications as well

as for future incorporation in crystallographic reference works.

2. Preliminaries

Let g be the number of asymmetric units in the unit cell, G be a

lattice-centering factor equal to 1, 2, 3 or 4 for P- and Rrhomb-type, A-,

B-, C- or I-type, Rhex-type or F-type lattices, respectively, N be the

number of atoms in the unit cell, N/g be the number of atoms in the

asymmetric unit, and let all the atoms be spherical, have only

isotropic displacement parameters and be located in general posi-

tions, there being no centrosymmetric or any other symmetric

substructure. Let ðPi; tiÞ be the space-group operator generating the

ith asymmetric unit from the reference unit (that generated by the

identity operator). The structure factor, allowing for resonant scat-

tering, is given by

FðhÞ ¼
PN=g

j¼1

fj JjðhÞ; ð1Þ

using the notation of Wilson (1978), with

JjðhÞ ¼
Pg

s¼1

exp½2�ihTðPsrj þ tsÞ�; ð2Þ

where hT is the hkl reflection, general or special, rj is the atomic

position vector, assumedly general, and fj ¼ f
ð0Þ
j þ f 0j þ if 00j is the

complex atomic scattering factor of the jth atom, where f
ð0Þ
j is the

scattering factor of the atom assuming that all its electrons behave as

if they were free, and f 0j and f 00j are, respectively, the real and

imaginary isotropic parts of the resonant-scattering contribution of

the atom.

We recall that in general the following relation between symmetry-

related structure factors is valid:

FðPT
s hÞ ¼ FðhÞ expð�2�ihT tsÞ

(Waser, 1955). Reflection h is called special if there is at least one Ps,

other than identity, for which PT
s h ¼ h. For such a reflection we must

have expð�2�ihTtsÞ ¼ 1 and this can be so only if hT ts is an integer.

For each h there is a subgroup Gh, the operations of which leave h

invariant; it is called the isotropy subgroup of h. If jGhj (the order of

Gh) is unity, Gh contains only the identity and h is then a general

reflection. If jGhj> 1, h is a special reflection (Stewart & Karle, 1976;

Bricogne, 1991). Stewart & Karle (1976) denote the order of the

isotropy subgroup by the symbol "h.

Another important criterion is the acentric or centric character of a

reflection. If at least one of the point-group operators satisfies the

relation PTh ¼ �h, the reflection h is centric. If none of the point-

group operators satisfies the latter relation, the reflection h is acentric.

These characteristics of the reflection h will be given for all the

noncentrosymmetric point groups in Table 1.

Note that the isotropy subgroup Gh is a subgroup of the point

group of the crystal. The isotropy subgroup is essentially equivalent

to the site-symmetry subgroup and its Hermann–Mauguin symbols,

as well as its orientations, can be deduced from Table 10.1.2.2 in



International Tables for Crystallography Volume A (Hahn &

Klapper, 2002) for the various classes of reflections listed in Table 1.

3. Derivation of the averages

It will be convenient to find first the expressions of the average hjJjj
2
i

for the cases of interest. The general expression of this average is

hjJjðhÞj
2
i ¼

Pg

s¼1

Pg

u¼1

hexp½2�ihTðPs � PuÞrj�i exp½2�ihTðts � tuÞ�: ð3Þ

The average for the most general case can be derived by the method

of Shmueli et al. (2008) but the derivation will be omitted since it

leads to the result given by Bertaut (1955, 1956). Bertaut’s result, in

the present notation, reads

hjJjðhÞj
2
i ¼ gGjGhj: ð4Þ

The quantity jGhj is also known as the average-intensity multiple; it

was first discussed by Wilson (1950) and Rogers (1950), and exten-

short communications

Acta Cryst. (2009). A65, 322–325 Shmueli and Flack � Intensity statistics of Friedel opposites 323

Table 1
Classification of the reflections.

See the text for the definition of the symbols.

Point group h jGhj S(sym) S(h) hAðhÞi=� ½hDðhÞ2i=��1=2

1 hkl 1 a g G G

2 hkl 1 a g G G

h0l 1 c g G 0
0k0 2 a s 2G 2G

m hkl 1 a g G G

h0l 2 a s 2G 2G

0k0 1 c g G 0

222 hkl 1 a g G G

0kl, h0l, hk0 1 c g G 0
h00, 0k0, 00l 2 c s 2G 0

mm2 hkl 1 a g G G

0kl, h0l 2 a s 2G 2G

hk0 1 c g G 0
h00, 0k0 2 c s 2G 0
00l 4 a s 4G 4G

4 hkl 1 a g G G

hk0 1 c g G 0
00l 4 a s 4G 4G

�44 hkl 1 a g G G

hk0 1 c g G 0
00l 2 c s 2G 0

422 hkl 1 a g G G

hk0, h0l, hhl 1 c g G 0
hh0, h00 2 c s 2G 0
00l 4 c s 4G 0

4mm hkl 1 a g G G

hk0 1 c g G 0
h0l, hhl 2 a s 2G 2G

hh0, h00 2 c s 2G 0
00l 8 a s 8G 8G

�442m hkl 1 a g G G

hk0, h0l 1 c g G 0
hhl 2 a s 2G 2G

hh0, h00 2 c s 2G 0
00l 4 c s 4G 0

�44m2 hkl 1 a g G G

hk0, hhl 1 c g G 0
h0l 2 a s 2G 2G

hh0, h00 2 c s 2G 0
00l 4 c s 4G 0

3 (HA) hkl 1 a g G G

00l 3 a s 3G 3G

3 (RA) hkl 1 a g G G

hhh 3 a s 3G 3G

312 (HA) hkl 1 a g G G

hhl 1 c g G 0
h00 2 a s 2G 2G

00l 3 c s 3G 0

321 (HA) hkl 1 a g G G

h0l 1 c g G 0
hh0 2 a s 2G 2G

00l 3 c s 3G 0

32 (RA) hkl 1 a g G G

hhl 1 c g G 0
h �hh0 2 a s 2G 2G

hhh 3 c s 3G 0

3m1 (HA) hkl 1 a g G G

hh0 1 c g G 0
h0l 2 a s 2G 2G

00l 6 a s 6G 6G

31m (HA) hkl 1 a g G G

h00 1 c g G 0
hhl 2 a s 2G 2G

00l 6 a s 6G 6G

Table 1 (continued)

Point group h jGhj S(sym) S(h) hAðhÞi=� ½hDðhÞ2i=��1=2

3m (RA) hkl 1 a g G G
�hhh0 1 c g G 0
hhl 2 a s 2G 2G

hhh 6 a s 6G 6G

6 hkl 1 a g G G

hk0 1 c g G 0
00l 6 a s 6G 6G

�66 hkl 1 a g G G

hk0 2 a s 2G 2G

00l 3 c s 3G 0

622 hkl 1 a g G G

hk0, h0l, hhl 1 c g G 0
h00, hh0 2 c s 2G 0
00l 6 c s 6G 0

6mm hkl 1 a g G G

hk0 1 c g G 0
h0l, hhl 2 a s 2G 2G

hh0, h00 2 c s 2G 0
00l 12 a s 12G 12G

�66m2 hkl 1 a g G G

hhl 1 c g G 0
hk0, h0l 2 a s 2G 2G

hh0 2 c s 2G 0
h00 4 a s 4G 4G

00l 6 c s 6G 0

�662m hkl 1 a g G G

h0l 1 c g G 0
hk0, hhl 2 a s 2G 2G

h00 2 c s 2G 0
hh0 4 a s 4G 4G

00l 6 c s 6G 0

23 hkl 1 a g G G

0kl, hh0 1 c g G 0
h00 2 c s 2G 0
hhh 3 a s 3G 3G

432 hkl 1 a g G G

hhl, 0kl 1 c g G 0
hh0 2 c s 2G 0
hhh 3 c s 3G 0
h00 4 c s 4G 0

�443m hkl 1 a g G G

0kl 1 c g G 0
hhl 2 a s 2G 2G

hh0 2 c s 2G 0
h00 4 c s 4G 0
hhh 6 a s 6G 6G



sively tabulated by Iwasaki & Ito (1977). Note that since for general

reflections jGhj ¼ 1 and for P- and Rrhomb-type lattices G = 1, all cases

of primitive and centered lattices associated with general or special

reflections are contained in equation (4).

The mean-square intensity difference of Friedel opposites,

allowing for acentric general or special reflections as well as lattice

centering, was derived by Shmueli et al. (2008) by a somewhat lengthy

method and a more concise rederivation of this quantity by a

statistical method, for a special case, was also presented in x4 of the

latter reference. We now show that the statistical method used by

Shmueli et al. (2008) also yields the fully general expression if the

equations for the second moment of jJj are taken from equation (4).

The quantity to be evaluated is

hDðhÞ2i ¼ hðjFðhÞj2 � jFð�hÞj2Þ2i ð5Þ

¼ hjFðhÞj4i � 2hjFðhÞj2jFð�hÞj2i þ hjFð�hÞj4i: ð6Þ

Following Wilson (1978), the fourth moment of jFðhÞj is given by

hjFðhÞj4i ¼
PN=g

i¼1

PN=g

j¼1

PN=g

k¼1

PN=g

l¼1

fif
�
j fkf�l hJiðhÞ J

�
j ðhÞ JkðhÞ J

�
l ðhÞi ð7Þ

¼
PN=g

i¼1

jfij
4
hjJiðhÞj

4
i

þ 2
PN=g

i¼1

PN=g

k¼1ði 6¼kÞ

jfij
2
jfkj

2
hjJiðhÞj

2
ihjJkðhÞj

2
i ð8Þ

¼
PN=g

i¼1

jfij
4
hjJiðhÞj

4
i þ 2G2jGhj

2
PN
i¼1

PN
k¼1ði6¼kÞ

jfij
2
jfkj

2: ð9Þ

Equation (9) was obtained from equation (8) by making use of

equation (4) as well as of the identity g
PN=g

i¼1 ¼
PN

i¼1. We can show in

a similar manner that

hjFð�hÞj4i ¼ hjFðhÞj4i: ð10Þ

The remaining term in equation (6) can be calculated in a similar

manner and results in

�2hjFðhÞj2jFð�hÞj2i ¼ A1 þ A2; ð11Þ

where

A1 ¼ �2
PN=g

i¼1

jfij
4
hjJiðhÞj

4
i

and

A2 ¼ �2G2
jGhj

2
PN
i¼1

PN
k¼1ði6¼kÞ

½jfij
2
jfkj

2
þRðf2

i f�2k Þ�:

If we insert equations (9), (10) and (11) in equation (6) we finally

obtain

hDðhÞ2i ¼ 2G2
jGhj

2
PN
i¼1

PN
k¼1ði 6¼kÞ

½jfij
2
jfkj

2
�Rðf2

i f�2k Þ� ð12Þ

¼ 4G2
jGhj

2
PN
i¼1

PN
k¼1

½ðf
ð0Þ
i þ f 0i Þf

00
k � f 00i ðf

ð0Þ
k þ f 0kÞ�

2
ð13Þ

� G2
jGhj

2�; ð14Þ

in full agreement with Shmueli et al. (2008). Note, however, that for

centric reflections jFðhÞj ¼ jFð�hÞj so hD2ðhÞi ¼ 0. During this

derivation the space-group-dependent fourth moment of jJðhÞj

appeared in equations (9), (10) and (11) but it canceled out

completely, leading to equation (12), which is space-group indepen-

dent. In the general case, some dependence on symmetry remains in

the order of the isotropy subgroup. However, it is not the mean-

square intensity difference which is of importance in experimental

work, but rather the Bijvoet ratio (see below).

The average intensity of Friedel opposites can also be derived by

the above approach, but we shall use that given by Shmueli et al.

(2008) as

AðhÞ ¼ ð1=2ÞhjFðhÞj2 þ jFð�hÞj2i

¼ GjGhj
PN
j¼1

½ðf
ð0Þ
j þ f 0j Þ

2
þ f 002j �; ð15Þ

� GjGhj�: ð16Þ

The experimentally important Bijvoet ratio (e.g. Flack & Shmueli,

2007) now follows from equations (13) and (15) as

� ¼
ðhD2ðhÞiÞ1=2

AðhÞ

¼
2f
PN

i¼1

PN
k¼1½ðf

ð0Þ
i þ f 0i Þf

00
k � f 00i ðf

ð0Þ
k þ f 0kÞ�

2
g

1=2

PN
j¼1½ðf

ð0Þ
j þ f 0j Þ

2
þ f 002j �

: ð17Þ

The Bijvoet ratio thus depends only on the chemical composition of

the unit-cell content and the wavelength of the radiation, and is

independent of the space-group symmetry and the centering factor of

the crystal lattice. However, the Bijvoet ratio given by Flack &

Shmueli (2007) was derived only for the triclinic space group P1.

4. Classification of the reflections and examples

It follows from equations (13), (14) and (16) and from the redefinition

of reflection characteristics that

hAðhÞi=� ¼ jGhjG for a centric or an acentric reflection ð18Þ

½hDðhÞ2i=��1=2
¼

�
jGhjG for an acentric reflection

0 for a centric reflection
ð19Þ

in agreement with Shmueli et al. (2008). While the latter reference

presents a tabulation of the above quantities and other characteristics

for the point groups 222 and mm2, the present Table 1 presents the

above quantities for all the noncentrosymmetric point groups. Table 1

contains the average intensity multiples hAðhÞi=� and the important

ratio ½hDðhÞ2i=��1=2 for classes of centric and acentric reflections.

Column 1 contains the Hermann–Mauguin symbol of the point

group; the settings ‘hexagonal axes’ (HA) and ‘rhombohedral axes’

(RA) are indicated. Column 2 contains for each point group the

relevant classes of reflections, column 3 contains for each class the

order of the isotropy subgroup jGhj, in column 4 S(sym) is ‘a’ if the

reflection is acentric and it is ‘c’ if the reflection is centric, in column 5

S(h) is ‘g’ if the reflection is general and it is ‘s’ if the reflection is

special. Columns 6 and 7 contain the values of the expressions given

by the left-hand sides of equations (18) and (19), respectively, in

terms of the lattice centering factor, G. Table 1 was constructed by

consulting Part 10 of International Tables for Crystallography Volume

A (Hahn & Klapper, 2002) and with the aid of a modified version of

program SPGMIC (Shmueli, 1984) in which the definitions of

general, special, acentric and centric reflections were implemented.

The reflection characteristics in Table 1 are of general value but

they also have practical aspects. For example, for all the space groups

with point groups 222, 4, 422, 622 and 432 only reflections belonging

to the hkl class can be used in application of Friedel differences, since

all the other classes are centric and hence their Bijvoet ratios vanish.

The same consideration can be applied to centric classes in other

point groups listed in Table 1. Notable examples are the h0l class in
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point group 2, the hk0 class in point group mm2 and many others.

Thus, the last column of Table 1 is of value in deciding which

reflections are likely to give meaningful results in any application

relying on measurement of intensity differences between Friedel

opposites and is also useful for identifying reflection classes for

calibration as the Friedel difference is zero.
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